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The boundary-layer momentum and energy equations have been solved numerically using 
a Keller-box scheme and, for turbulent flow, an eddy-viscosity model. The numerical 
method has been successfully validated on a number of standard test cases for unheated 
discs, including data for velocity profiles and moment coefficients in both laminar and 
turbulent flow, and some old and new test cases for heated discs, including average and 
local Nusselt numbers for a range of disc-temperature distributions and for Reynolds 
numbers up to 3.2 x 106. The method is shown to be sufficiently simple, efficient, and 
accurate for all practical purposes. 
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1. Introduction 

A simple rotating disc can be used to model the more complicated 
flows that occur inside the rotors of turbomachinery. In most 
practical applications, the disc usually rotates close to a 
stationary casing or corotates with other discs, as is the case 
for turbine and compressor discs in a gas-turbine engine. 
However, in order to understand these flows, it is helpful to 
study first the case of a single disc rotating in an infinite 
quiescent environment: the so-called free disc. 

Laminar flow over the free disc, which was first studied by 
von Khrmhn I and solved numerically by Cochran, 2 provides 
one of the few cases for which exact solutions of the Navier-Stokes 
equations exist. For a disc rotating with an angular speed fZ 
in a fluid with kinematic viscosity v, a boundary layer with a 
uniform thickness of order (v/Q) 1/z forms on either side of the 
disc. Inside the boundary layer, the tangential component of 
velocity, v~, is sheared from t3r at the surface of the disc to zero 
in the "free stream." "Centrifugal forces" cause a radial outflow 
of fluid inside the boundary layer, and fresh fluid is entrained 
axially, as shown in Figure 1. In practice, the flow inside the 
boundary layer can be laminar or turbulent, and for a smooth 
disc the most important determining parameter is the local 
Reynolds number, Qr2/v, where r is the radial location. For 
large values of f~, the flow may be laminar near the center of 
the disc and turbulent at large radii, with a transition zone 
between the laminar and turbulent boundary layers. 

The free-disc fluid-dynamics problems have been studied 
theoretically using analytical techniques for laminar flow and 
using integral and numerical methods for turbulent flow. 
Further details of these are given by Owen and Rogers, 3 but 
the papers of most relevance to the numerical method described 
below are those of Cooper, 4 Koosinlin, 5 and Launder and 
Sharma, 6 and Cebeci and Abbott. 7 Cooper and Cebeci and 
Abbott modeled the Reynolds-stress terms by an isotropic 
eddy-viscosity turbulence model proposed by Cebeci and Smith.8 
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Koosinlin assessed both isotropic and anisotropic mixing- 
length models, and Launder and Sharma used the low-Reynolds- 
number version of the k-e turbulence model developed by Jones 
and Launder. 9 

In the present work the fluid-dynamics problems of the free 
disc are revisited, using a method similar to that employed by 
Cebeci and Abbott, and a fresh look is taken at the heat-transfer 
case. The boundary-layer equations and turbulence model are 
discussed in Section 2, and the numerical method of solution 
is described in Section 3. Section 4 includes comparisons 
between the computed results and experimental data for velocity 
profiles and moment coefficients, and Section 5 contains com- 
parisons between computed and measured average and local 
Nusselt numbers. 

2. Boundary-layer equations and turbulence 
model 
2.1 Boundary-layer equations 
For the steady, incompressible, axisymmetric boundary layer 
formed on the rotating disc, in the absence of a radial pressure 
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gradient, the governing continuity, momentum, and energy 
equations may be expressed in a stationary cylindrical coordinate 
(r, $, z) system (see Owen and Rogers 3) as 

• continuity 

l_ ~ (ru) + OW=o (2.1) 
r ~r Oz 

• r momentum 

t~u t3u v~_ 1 ~ ,  
u - -  + w (2.2) 

Or Oz r p Oz 

• 4' momentum 

u ~vC'+w ~vc~-t u%_ 1 ~z~ (2.3) 
~r Oz r p Oz 

• energy 

~3h Oh 1 O 
u - -  + w . . . .  ( -  q + u~, + v,F,~) (2.4) 

Or Oz p Oz 

where the total enthalpy, h, is given by 

h = C,T+ ½(u 2 + v,~) (2.5) 

For turbulent flow, employing the concepts of effective 
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exchange coefficients, the radial and tangential shear-stress 
components, z, and ~ ,  and the heat flux, q, are defined by 

1 Ou 1 Or4, (2.6) 

and 

q= - pCp O~ 

The effective viscosity, vaf, is the sum of the laminar and 
turbulent contributions, such that 

l~©ff = V "4- l~ t (2.8) 

and the effective Prandtl number, Preff, is related to the laminar 
and turbulent values by 

( v ~  v + v t  
~feff = ~r ~ (2.9) 

For the results presented in this article, the turbulent Prandtl 
number, Pr,, is taken to be constant with a value of 0.9. For 
laminar flow, the eddy viscosity, vt, is zero; for turbulent flow, 
the formulation is given in Section 2.2. 

Boundary conditions for the velocity field are given by the 

Notation 
a + 

b 
Cm 
Cp 
f 
f ,  
9 

G 
h 
k 
1 
M 
n 

Nu 
Nu* 

P r  

q 
r 

R 
R% 
R ~  

S 
T 
U 

U 

V 

W 

W 
X 

Z 

Van Driest's damping constant 
Outer radius of disc 
Moment coefficient, 2M/½PflZb 5 
Specific heat at constant pressure 
Nondimensional stream function, ~/r2(vQ) In 
Nondimensional radial component of velocity, u/fir 
Nondimensional tangential component of velocity, 
v,lt~r 
Empirical factor, Equation 2.20 
Total enthalpy 
Thermal conductivity 
Mixing length 
Frictional moment on one side of the disc 
Exponent in power law for temperature profiles 
Local Nusselt number, qsr/k(T~-T~) 
Local Nusselt number based on adiabatic-disc 
temperature, qsr/k( T~ - T~.~d) 
Prandtl number, I~Cp/k 
Heat flux 
Radial coordinate 
Recovery factor 
Rotational Reynolds number, f~b2/v 
Reynolds number based on swirl momentum 
thickness, 62~r/v 
Derivative of nondimensional enthalpy, 0' 
Temperature 
Radial component of velocity 
Derivative of nondimensional stream function, f '  
Tangential component of velocity 
Second derivative of nondimensional stream 
function, f "  = U' 
Axial component of velocity 
Derivative of nondimensional tangential velocity, g' 
Nondimensional radius, rib 
Axial distance 

Z + 

Zc 

Nondimensional axial distance, zzls/2/Vp 1/2 
Axial location at which vt, i = Yt, o 

Greek symbols 

Ytr 
6 
62 
~1, ~2 
q 
0 
K 

# 
V 

P 

T 

Tr 

X 
¢ 
t) 

Outer eddy-viscosity coefficient 
Nondimensional effective viscosity 
Transition intermittency factor 
Boundary-layer thickness 
Swirl momentum thickness 
Error tolerances 
Transformed z coordinate, ([l/v)l/2z 
Nondimensional enthalpy profile 
Von Karman's  mixing-length constant 
Dynamic viscosity 
Kinematic viscosity, #/p 
Density 
Function in relationship between h and 0 

/ ' .2 A_ ~2~1/2 Resultant shear stress, t-, T.~j  
Radial component of shear stress 
Tangential component of shear stress 
Nondimensional local shear stress, z/% 
Angular coordinate 
Cole's profile parameter, Equation 2.18 
Stream function 
Angular speed of the disc 

Subscripts 
ad 
a v  

eff 
i 
O 

ref 
S 

t 
tr 
O(3 

Adiabatic-disc condition 
Radially weighted average 
Effective value 
Inner region of boundary layer 
Outer region of boundary layer 
Reference value 
Value at the disc surface 
Turbulent value 
Transitional value 
Ambient value 
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no-slip and no-penetration conditions on the disc as follows: 

z=O: u = w = 0  v~=fir 
z-~oo: u , v ,~ O  (2.10) 

For the energy equation, 

z = 0 and disc temperature specified: T = T~ 

z = 0 and disc flux specified: q=q~ (2.11) 

z ~ oo : T--* T~ 

where Too is the ambient temperature. 
To complete the formulation of the problem, initial conditions 

must be specified at the starting radius for the velocity and 
temperature distributions. Here, the radial velocity is assumed 
to be zero, and the tangential velocity and the temperature are 
assumed to decrease linearly with the distance z from the disc 
surface, such that 

u = 0  

 )Or O<~z<<.zoo (2.12) 

where z® is a chosen value greater than the theoretical laminar 
boundary-layer thickness 6. For convenience, it was assumed 
that 6=3.6(v/fi) 1/2, which corresponds to the axial location 
where Cochran's solutions 2 show that v+/flr = 0.05; in practice, 
a value of zoo equal to 8(v/fi) 1/2 has been found to be satisfactory. 

2.2 Turbulence model 
The turbulence model employed here is an adaptation of the 
isotropic eddy-viscosity formulation proposed by Cebeci and 
Smith, 8 which can account for various observed free-disc 
boundary-layer effects. According to this formulation, the 
boundary layer is assumed to comprise inner and outer axial 
regions, denoted here by the subscripts i and o, respectively. 

For the inner region, close to the disc surface, v t is based on 
Prandtl's mixing-length hypothesis. Using the resultant mean- 
velocity gradient for the swirling boundary layer on the disc, 
vt,i is given by 

I-lt3u \2 /Or \2-1112 
o<:<.:+ 

where z~ is the axial location at which vt.i~--Vt,o . The mixing 
length, l, is defined by 

l=xz{1-exp  [ -  z + (z + )/A + ]} (2.14) 

where z + and z+ are, respectively, the nondimensional axial 
distance and local shear stress given by 

z +-zz~/2 and z +=z-  (2.15) 
v p  112 z s 

with % being the resultant wall shear stress. By convention, the 
empirical constants ~c and A + are assigned the values of 0.4 
and 26.0, respectively. 

For the outer region of the boundary layer, 

V,.o== Ioo {fir-[u2 +(fir-v¢,) 2} dz z~<<.z (2.16) 
d o  

Continuity between the inner and outer regions is maintained 

by choosing v t = min(vt,i, Vt,o). The parameter ~t in Equation 2.16 
is usually assumed to be a universal constant equal to 0.0168 
for flow at high Reynolds number. However, according to 
Cebeci, 1° at low Reynolds numbers, ct is a function of the 
Reynolds number, such that 

¢ : 0 . 0 1 6 8 (  1.55~ (2.17) 
\ l + x )  

where Z is given by the empirical expression 

Z = 0.5511-exp (-0.243yltZ-O.298y)] (2.18) 

with y=R~, /425-1  for R6~>425 and y = 0  for R6~<425. For 
a swirling boundary layer, R+~ is the Reynolds number based 
on the swirl momentum thickness 6z such that R+2 = 62fir/v and 

6 2 = f ;  firV¢'(l-~)\ dz (2.19, 

The eddy-viscosity formulation given by Equations 2.13 and 
2.16 is based on empirical correlations obtained for fully 
turbulent flows and therefore should not be expected to give a 
good representation of the transition from laminar to turbulent 
flow. According to experimental evidence (see Gregory et al.l 1), 
laminar flow becomes unstable on a smooth disc at x2Re,~ 
1.8 x 10 5, and transition to turbulent flow is complete by 
x2R%~3 x 10 s, where x=r/b, Re#=fib2/v, and b is the radius 
of the disc. Following Cebeci and Abbott, 7 we accounted for 
the effects of transition by multiplying vt.i and vt. o by an 
intermittency factor, ?,,, given by 

y,, = 1 - e x p  [ - G(1 --Xtr/X) 2"] 
(2.20) 

G = 8.35 × 10-+(x2Re¢)2(xt2~Re+) - 1.34 

where xt, is the nondimensional radial location of the start of 
transition. 

3. Numerical  method 

3. 1 Transformation of the momentum equations 
Although Equations 2.1-Z3 may be solved directly, it is more 
convenient to transform them by using a similarity variable, q, 
where 

q = (--flv)l/Zz (3.1) 

and by introducing a nondimensional stream function f(r, q) 
defined as 

~(r, z) (3.2) 
f=r2(vfl)ll2 

Here, ~b(r, z) is the stream function for which 

u r = - -  and w r = - - -  (3.3) 
8z dr 

such that continuity Equation 2.1 is satisfied. 
With the introduction of an additional nondimensional 

variable g(r, r/) given by 

V~ g = - -  (3.4) 
fir 

Equations 2.2 and 2.3 can be expressed as 

' d ( . , f f  .,, 
(18f")' + 2ff"--(f')2 +g2=rtJ N - s  ~r) (3.5) 
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(flO')'+2fe'-2f'o'=r(f'O~O-o'Of:-~ (3.6) 
k or or/ 

where 

= 1 + v, +, v+ = v, (3.7) 
V 

and the primes denote differentiation with respect to 0. 
In terms of the transformed variables, the appropriate 

boundary conditions, corresponding to Equations 2.10, become: 

of=O: f = f ' = 0  9= 1  

0 - , ~ :  f ' = 9 = 0  (3.8) 

Use of the similarity variable, 0, results in a transformed 
boundary layer of constant thickness for laminar flow [where 
6 oc (v/fl)t/2], and it also provides a convenient scaling factor 
for turbulent flow. (Initial conditions for f and O are provided 
by Equation 2.12). 

3.2 Transformation of  the energy equation 

As for the momentum equations, it is useful to express the 
governing energy Equation 2.4 in terms of nondimensional 
transformed variables before it is solved. This is achieved by 
introducing a further nondimensional variable, O(r, 0), such that 

h(r, 0)= h~(r)[1 + O(r, 0)¢(r)] (3.9) 

where ~(r) is a function that is specified according to the thermal 
boundary conditions used. 

For specified disc temperature, T, (implying known enthalpy), 
is chosen to be 

~_h~-h~ 
h~ (3.10) 

giving the definition 
O= h-h~  

hs - h~o 
(3.11) 

such that, like O, 0 is unity at the disc surface and zero at infinity. 
If the heat flux, q,= -k(dT/dz),=o, is specified, it follows 

from Equations 2.5 and 3.9 that 

q,= ----~p ¢(r)O (r, 0 ) - ~  O (r, O) (3.12) 

For this case, it is convenient to define ¢ as 

qsCp v t/2 
h~ 

(3.13) 

such that 0' is unity at the disc surface. 
Utilizing Equation 3.9 together with Equations 3.1-3.4, we 

can write the energy Equation 2.4 in nondimensional trans- 
formed variables as 

0 '  
(~O')'-¢rf'O+2f'O'=r(f'dO-o'~-r)-['(f'f"+OO')]'Or (3.14) 

where 

1 [  Pr + \  v' ) 
(3.15) 

= h-~-~ L Pr \ Prt,]J 
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and a is a nondimensional parameter defined for the case of 
given disc temperature by 

r d 
a =  - -  ( T , -  T®)  (3 .16)  

T,-T= dr 

and for given disc flux by 

r d~ 
a = -  - -  (3.17) 

dr 
In terms of 0, the boundary conditions given by Equation 

2.11 become 

0 = 0  atOs+a20's = 1 
0 ~  0®--*0 (3.18) 

For specified temperatures, a~ = 1 and a2 =0;  for specified flux, 
at = 0 a n d  a2 = 1. 

3.3 Solution procedure 

The transformed momentum and energy Equations 3.5, 3.6, 
and 3.13 were converted, through the introduction of auxiliary 
variables U(r, ~l), V(r, 0), W(r, 0), and S(r, 0) to a system of 
seven first-order differential equations, as follows: 

f ' =  U (3.19) 

U'= V (3.20) 

O'= W (3.21) 

OU vOf~ (3.22) (flV)' + 2fV-U2 +oe=r(U~r - Or,] 

(flW)' + 2fW- 2Uo = r (  U 00_ W Of ~ (3.23) 
\ Or Or,] 

O'=S (3.24) 

0U 
(~S)'-aUO+ 2US=r(u  OO-S-or (3.25) 

In terms of the new variables, the appropriate boundary 
conditions become 

0 = 0: f(r ,  O) = U(r, O) = 0 o(r, O) = 1 

atO(r, O)+a2S(r, 0)= 1 (3.26) 

0 ~ :  U(r, ~ ) =  W(r, ~)=0( r ,  oo)=0 

The complete system, Equations 3.19-3.25, was then dis- 
cretized by use of the semi-implicit Keller-box tz scheme. For 
incompressible flow, where the velocity field is independent of 
the temperature field, the sets of momentum and energy 
equations are uncoupled. At each radius, the nonlinear algebraic 
momentum equations were first solved following linearization 
by Newton's method, and the linear energy equations were then 
solved directly. Solutions of the 5 x 5 and 2 x 2 block systems 
for the momentum and energy equations, respectively, were 
accomplished by an efficient block-tridiagonal factorization 
technique. 

The computations were started at radius r = 0 where Equations 
3.19-3.25 constitute a system of ordinary differential equations, 
since (for the similarity solutions that occur for laminar flow) 
the right-hand sides of Equations 3.22, 3.23, and 3.25 are 
identically zero. 

The resulting local-similarity solutions should correspond to 
the exact laminar solutions first obtained by Cochran 2 for the 
full Navier-Stokes equations. In the present solution of this 
system of ordinary differential equations, at r = 0, initial esti- 
mates for the dependent variables were given by Equation 2.12, 
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Figure 2 
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which in terms of the new variables become: 

f(0, t/)= U(0, q)= V(0, q )=0  

g(0, q)= 0(0, r/)= 1 - q ~  0 ~<r/~< r/~ (3.27) 

1 
W(O, n )=  S(O, ~)= - - -  

A marching procedure was adopted, which advanced radially 
outwards on a grid having a variable spacing in the radial 
direction and a geometrically increasing spacing in the axial 
direction, as illustrated in Figure 2. For turbulent flow, the 
grids were concentrated near the disc surface, where gradients 
are larger; this allowed good resolution in the viscous sublayer 
and a coarse mesh toward the edge of the boundary layer. 
However, for laminar flow, where gradients are less severe and 
the boundary layer is of constant thickness, it was found 
satisfactory to use a uniform mesh in the axial direction, 
typically of 100 nodes with a nondimensional spacing of 
q=0.08. 

For the turbulent-flow computations presented, a geometric 
progression was used with the first nondimensional axial grid 
spacing of 0.01 and an expansion factor of 1.05. This grid 
distribution produces a number of axial nodes that typically 
increased from about 80 at r =0  to 140 at a radius corresponding 
to x2R% = 107. This increase in grids corresponds, approxi- 
mately, to the increase in computed boundary-layer thickness 
with radius, and there were always at least 10 nodes in the 
viscous sublayer. 

Two different criteria were adopted to ensure that the axial 
domain of computation was sufficiently large to encompass the 
important flow and temperature details. At each radial location, 
one of the following checks was made after convergence of the 
solution: either 

IW(r, oo)1, IS(r, oo)1 ~<el 

o r  

{IV(r, oo)]2-I-rW(r, O0)']2}I/2~e2 and IS(r, oo)l~<el 

where the tolerances e, and e2 were typically 0.001 and 0.01, 
respectively. Either check has been found to be effective in 
determining the extent of the momentum and thermal boundary 
layers beyond which the velocity components and temperature 

may be taken to equal their values at infinity. If the condition 
programmed was not satisfied, further points were added to 
the domain of computation and the procedure repeated. 

By the above process, the axial calculation domain, qooj, at 
the radial location rj became greater than that at the previous 
radial location r~_ 1. Since, at r j, the upstream values of the 
dependent variables and their derivatives were obtained from 
values at r i_ 1, it was necessary to extrapolate their values for 
t/>r/~j_ 1. Hence in this region, f was given by 

f (r  j_ 1, q)= [r l -  rl~.j- 1] U(r j_ 1.~) + f ( r j -  1,~o) 

with U(rj, q) taken to be U(rj, q~) and V(rj, tl) to be zero. Values 
for g(rj, q) and O(rj, q) were taken to be their values at (rj, r/~) 
and their derivatives were consequently zero. 

Further details of the numerical method are given by Ong, 13 
and typical run times were approximately 5 rain on a VAX 
8530 computer. 

4. Results for  an unheated disc 

The finite-difference procedure described was used, with a grid 
of 50 radial nodes, to compute the flow in the boundary layer 
from zero radius to that corresponding to x2Re#= 107. The 
computations were compared to theoretical results for laminar 
flow and to experimental data for laminar, transitional, and 
turbulent flow. (Most of the experimental data were extracted 
manually from graphs in the publications cited.) 

4.1 Veloci ty prof i les 

The difference between the computed velocity profile for laminar 
flow and Cochran's results 2 was less than 0.5%. The non- 
dimensional shear stress, g'(r, 0), was computed to be -0.616, 
which agrees exactly with Cochran's value (which was given 
to an accuracy of three significant places). 

Figure 3 shows the comparison between the computed 
tangential component of velocity and the measured values of 
Theodorsen and Regier. 14 In Figure 3a (x2Re¢=2.72 x 10s), 
the flow was assumed to be laminar; for the other results, 
transition was assumed to start at XtZrR%=3 x 105. Agree- 
ment between the computed and measured velocities is good, 
particularly at the higher Reynolds numbers. 

Figures 4 and 5 show the comparison between the computed 
tangential and radial components of velocity and the measured 
values of Cham and Head; 15 the abscissa, 62, is the momentum 
thickness defined by Equation 2.19. It can be seen that the 
computed tangential components of velocity provide a good fit 
to the experimental data, whereas the computed radial com- 
ponents tend to underestimate both the maximum value and 
the value at the outer edge of the boundary layer. 

4.2 M o m e n t  coef f ic ients  

The moment coefficient, C,,, is defined as 

2M 
C m - -  l pf]2b5 

where 

= - 2 n  t b r2%,s M dr 
Jo  

(4.1) 

(4.2) 

and 

~*'" = \ Oz / ,  = o 
(4.3) 
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Figure 3 Axial profiles of tangential component of velocity for 
laminar and transitional flow over the free disc 

In terms of the transformed variables, 

Cm=-r;. r3 g'(r, O) dr (4.4) 

For laminar flow, where #'(r, 0)=0.6159, 

Cm = 3.87Re~ 1/2 (4.5) 

which agrees exactly with Cochran's solution. 
Computations were carried out for turbulent flow for three 

different cases. 

(i) Transition begins and ends at x2Re#= 3 x l0 s. 
(ii) Transition is modeled by the introduction of an inter- 

mittency factor, 7tr (see Equation 2.19), with xt2rR%= 
1.85 x l0 s. 

(iii) Turbulent flow occurs for all x2R%. 

A comparison between the computed moment coefficients and 
the measurements of Theodorsen and Regier 14 and Owen 16 are 
shown in Figure 6. Both cases (i) and (ii) provide a good fit to 
the data of Theodorsen and Regier; case (iii) fits the data of 
Owen, who attributed the premature transition to atmospheric 
disturbances created by the electric motor that rotated the disc. 
For Re~> 106, the three cases converge to a single curve that 
is in close agreement with the data and with Dorfman's 
relationship: 1 ? 

C,, = 0.982(loglo R%)- 2.s8 (4.6) 
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Figure 6 Moment coefficients for the free disc 

5. Results for  a heated disc 

5.1 Definit ion of  Nusselt numbers 

Commonly used definitions of local and average Nusselt 
numbers are 

q,r q,,,vb (5.1) 
NU=k(T _ T®) and Nu=,-k(T  _ T=)av 

where the subscript av refers to the radially weighted average 
value. However, at high Reynolds numbers where the effects 
of viscous dissipation can be significant, it is more appropriate 
to use the adiabatic-disc temperature, T,.ad, rather than the 
ambient temperature, Too. Owen and Rogers a give 

½Rt~2r 2 
Ts,ad = T o + - -  (5.2) 

Cp 

(where the recovery factor, R, is usually assumed to be equal 
to PrZ/a), and this leads to the alternative definitions of Nusselt 
numbers: 

N u * -  q,r and Nu.*v- q~,=~b (5.3) 
k(T~- T,,=a) k(T~- T~,.d).v 

5.2 Comparison with existing theory 

It is convenient to consider "power-law" disc-temperature 
distributions of the form 

T, - -  T r e  f o E  r n (5.4) 

where n may be positive or negative. Dorfman :7 obtained 
solutions of the integral equations, based on the Reynolds 
analogy, and his results can be expressed as 

Nu = 0.308Prl/2(n + 2)'/Z(x2Re,) 1/2 (5.5) 

and 

Nu=, = 0.308Prl/2(n + 2)1/2Re~/2 (5.6) 

for laminar flow with n > - 2 ,  and 

Nu = 0.0197Pr°'6(n + 2.6)°'2(x2Re÷) °'s (5.7) 

and 

Nu=, = 0.0197Pr°'6(n + 2)(n + 2.6)- °'aRch'S (5.8) 

for turbulent flow with n > -2 .6 .  
A number of authors have obtained similarity solutions for 

the laminar energy equation for various values of n and Pr. 

Some of their results are shown in Table 1, together with 
Dorfman's solution and results obtained using the numerical 
method described in Sections 2 and 3. For -3~<n~<3, 
0.1 ~< Pr ~< 10, the present computations agree closely with the 
similarity solutions obtained by Rogers (see Owen and Rogers 3 
and note that Rogers used Pr=0.71 for air rather than the 
value of 0.72 used by the other authors). It should also be noted 
that Dorfman's Equation 5.5 is only accurate for Pr = 1, n = 2 
(the conditions for which the Reynolds analogy is valid). 

The negative Nusselt numbers (which occur in laminar flow 
for n < - 2  and which can also occur in turbulent flow for 
negative values of n) can be explained by considering the flow 
of cold fluid over a hot disc. The fluid close to the disc surface 
decreases in temperature, as it moves radially outward in 
the boundary layer at a slower rate than the disc itself. 
Consequently, heat is transferred to the disc despite the fact 
that fluid outside the boundary layer is colder than the disc! A 
turning point in the temperature profile produces a reverse 
gradient at the disc surface. (Nu can also become negative, in 
both laminar and turbulent flow, when viscous dissipation causes 
frictional heating of the disc; the use of Nu* rather than Nu 
can avoid the occurrence of negative Nusselt numbers under 
these conditions.) 

5.3 Comparison with experimental data: average 
Nusselt numbers 

Cobb and Saunders 2° measured the average Nusselt numbers 
for an isothermal disc (n = 0) rotating about a horizontal axis 
in air (Pr=0.72) in the Reynolds number range 104<R% 
<6 x 105, with transition from laminar to turbulent flow 
occurring at Re~-2.4 x 105. For Re~<2 x 105, their results 
were correlated by 

Nuav = 0.36Re~/2 (5.9) 

which is approximately 10% higher than the present laminar 
computations (and the results of Rogers and of Hartnett and 
Deland). This "error" is attributed to the effects of natural 
convection and radiation, both of which can be significant at 
the low values of Nu associated with experiments conducted 
under laminar-flow conditions. For turbulent flow, Cobb and 
Saunders extrapolated their results to produce the correlation 

NUav =0.15Re~ "s (5.10) 

which agrees with Dorfman's Equation 5.8. 
McComas and Hartnett 21 also measured the average Nusselt 

numbers for an isothermal disc rotating in air for 2 x 104< 
Re, < 6 x 105. Owen, Haynes and Bayley 22 made measurements 
on a disc with a nonuniform temperature (approximated by 
n = 2) rotating in air for 2 x 105 < Re, < 4 x 106. They correlated 
their results by 

NU=*v =0.0171Re~ "sla (5.11) 

which agrees with the Reynolds analogy applied to the measured 
moment coefficients of Owen. 1~ (The absence of transitional 
effects was attributed to the atmospheric disturbances referred 
to in Section 4.2.) 

Figure 7 shows a comparison between the preceding data 
and the computations based on the methods described in 
Sections 2 and 3. For both the isothermal and quadratic 
computations (n=0, 2), transition was assumed to occur at 
x2Re,= 1.85 x 105. It can be seen that the computed curves 
provide a good fit to most of the data for n = 0 but are lower 
than the data for n = 2. Both computed curves are in reasonable 
agreement with Dorfman's turbulent result, Equation 5.8. (It 
should be noted that, although Nu,*v is used in Figure 7, the 
difference between Nu,v and Nu=*v is unlikely to be significant 
for Re, < 106.) 
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Table I The effect of Prandtl number (Pr) and the power-law index (n) on Nu(x = Re¢) -1/= for laminar f low over a free disc 

Pr=0.1 Pr=0.72 

Owen and Dorfman's 
Present Owen and Hartnett Sparrow Present Rogers Hartnett approx, sol. 
study Rogers s and Deland TM and Gregg t" study (Pr=0.71) and Deland (Equation 5.5) 

- 3  -0.0437 -0.0438 -0.3000 -0.2952 
- 2  0 0 0 0 0 
- 1 0.0400 0.0399 0.1911 0.1893 0.265 

0 0.0766 0.0766 0.0766 0.076581 0.3286 0.3259 0.330 0.375 
1 0,1105 0.1104 0.110 0.4353 0.4319 0.437 0.459 
2 0.1418 0.1417 0.141 0.5223 0.5185 0.524 0.530 
3 0.1710 0.1709 0.5960 0.5918 

Pr = 1.0 Pr = 10.0 

Dorfman's 
Present Owen and Hartnett Sparrow approx, sol. Present Owen and 
study Rogers and Deland and Gregg (Equation 5.5) study Rogers 

Ha~neR Spanow 
and Deland and Gregg 

- 3  -0.4071 -0.4074 -3.1092 -3.057 
- 2  0.0002 0 0 0.0004 0 
- 1  0.2351 0.2352 0.308 0.7357 0.7368 

0 0.3962 0.3962 0.396 0.39625 0.436 1.1335 1.134 1.13 
1 0.5180 0.5180 0.518 0.533 1.4079 1.408 1.41 
2 0.6159 0.6159 0.616 0.616 1.6201 1.621 1.62 
3 0.6982 0.6982 1.7953 1.796 

1.1341 

Pr = 100.0 

Present Hartnett Sparrow 
n study and Deland and Gregg 

- 3  -19.329 
- 2  0.0012 
- 1  1.7982 

0 2.6857 2.69 
1 3.2830 3.28 
2 3.7143 3.71 
3 4.1181 

2.6871 

10' 

10 = 

10 a 

10' 

n=2 
n = 0  

g 1( 

x = ,  

1 i i I I , l l l  i I i i i l l l J  i l i i i i l i a  

10 s 10 6 10"  

Re 0 
C O I I B U t d  r e l l U J t l  - -  - - -  D o r f l l i n l l l  I o l u t i o l z  

÷ Cobb  i ~ m n d e r l  2 °  } l i x p e r l l m n t a l  d a t a  

o NoCol I Im • I ig lPtJaet t  =1 J (111 = 0 )  

x 0 R n ,  I ~ l m e =  a n d  B a y l e y  == e x p e r i a a t a l  d a t a  ( n  = 2 )  

5.4 Comparison with experimental data: 
local Nusselt numbers 

Northrop and O w e n  23 obtained local Nusselt numbers for a 

disc rotating in air at Reynolds numbers up to Re¢= 3.2 x 106. 
The disc-temperature distribution could be varied by means of 
built-in electric heaters, and the Nusselt numbers could be 
obtained both from fluxmeters and from solution of the 
conduction equations for the disc itself. The four disc-temper- 
ature distributions tested were approximated by power laws 
with n ~ - -0.2, 0.1, 0.4, and 0.6. The local Nusselt numbers, 
measured by fluxmeters, are shown in Figures 8-11. Compu- 
tations of the Nusselt numbers were obtained using disc 
temperatures as boundary conditions for the energy equation. 
As the original raw data were unavailable, the disc temperatures 
were obtained from the smoothed data found in Nortlirop's 
thesis; 24 further details are given by eng. 13 

Figure 8, for n -  ~ -0.2, shows that, apart from the lower 
values of Re÷, the agreement between the computed and 
measured Nusselt numbers is good. The underestimate of the 
measured values at the lower Re¢ is believed to be caused by 
the effects of radiation and natural convection, which were also 

Figure 7 Average Nusselt numbers for the free disc rotating in air 
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mentioned in Section 5.3. The fall-off in Nu* for large values 
of x at Re~.=2.65 x 10  6 is attributed to the local disc-temper- 
ature distribution. 

Similar trends can be seen in Figures 9-11, which serve to 
illustrate that, for a given Reynolds number, Nu* increases as 
n increases and, for a given value of n, Nu* increases as Re¢ 
increases. Overall, there is good agreement between the com- 
puted and measured Nusselt numbers, which gives confidence 
in the accuracy of both. 

6. Conclus ions  

The boundary-layer momentum and energy equations for the 
free disc have been solved using a Keller-box finite-difference 
scheme and the Cebeci and Smith s eddy-viscosity model. 

For isothermal laminar flow, the computed velocity distri- 
butions and moment coefficients are in good agreement with 

both analytical solutions and experimental data. For isothermal 
turbulent flow, the computations agree well with the available 
experimental data. 

For the case of a heated disc, the computations of the Nusselt 
numbers for laminar flow agree closely with the solutions of 
other authors for a wide range of Prandtl numbers and 
disc-temperature distributions. For both laminar and turbulent 
flow, the computed average and local Nusselt numbers are in 
good agreement with the available experimental data. Although 
the experiments were all performed in air, the data were 
obtained over a wide range of disc-temperature distributions 
and for Reynolds numbers up to Re,= 3.2 x 10 6. 
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The method of solution used here is shown to be sufficiently 
simple, efficient, and accurate for all practical purposes. It 
can be readily extended to other rotating-disc problems, as 
demonstrated by Ong and Owen. 25'26 
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